DISTRIBUZIONE TCEV: PRECIPITAZIONI INTENSE IN SARDEGNA¹

- carta delle SZO >>>> individuare la sottozona omogenea (SZO)
- carta delle isoiete >>>> leggere la pioggia indice giornaliera μ_α (espressa in mm)

NOTA: le precipitazione $h e \mu$ sono sempre espressse in mm, la durata τ in ore; relazioni valide per tempi di ritorno T da 2 a 1000 anni e durate τ da 30 min a 24 h

EVENTI ESTREMI DI PRECIPITAZIONE GIORNALIERA

L'altezza di pioggia giornaliera h_T con assegnato tempo di ritorno T in anni è data da:

SZO 1 h(T) =
$$\mu_g$$
 K_T = μ_g [0.69319 + 0.72015 Log₁₀T + 3.1364 10⁻² (Log₁₀T) ²] **SZO 2** h(T) = μ_g K_T = μ_g [0.60937 + 0.91699 Log₁₀T + 3.9932 10⁻² (Log₁₀T) ²] **SZO 3** h(T) = μ_g K_T = μ_g [0.47839 + 1.22460 Log₁₀T + 5.3321 10⁻² (Log₁₀T) ²]

La pioggia indice giornaliera μ_g è la media dei massimi annui di precipitazione giornaliera. K_T è il coefficiente (adimensionale) di crescita espresso in funzione del tempo di ritorno T.

EVENTI ESTREMI DI PIOGGE BREVI ED INTENSE: CURVE SEGNALATRICI DI POSSIBILITA' PLUVIOMETRICA

La pioggia indice $\mu(\tau)$ di durata τ (ovvero la media dei massimi annui delle piogge di durata τ) può essere espressa in forma monomia:

$$\mu(\tau) = a_1 \, \tau^{n_1}$$

dove i coefficienti a_1 e n_1 si possono determinare in funzione della pioggia indice giornaliera μ_g :

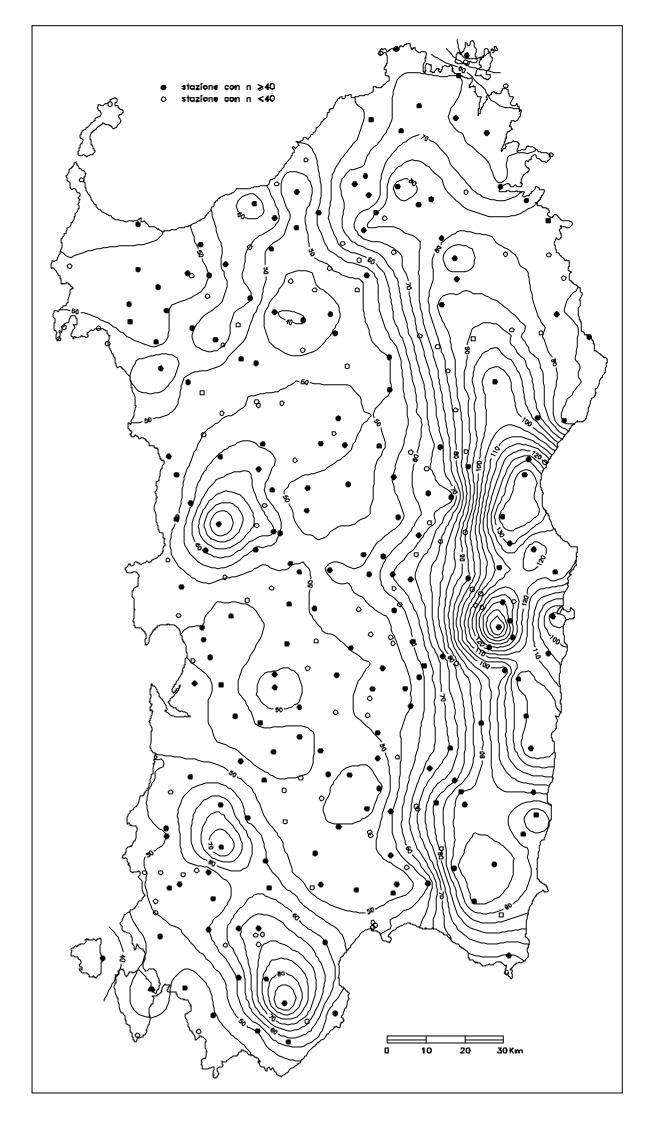
$$a_1 = \mu_g / (0.886 \cdot 24^{n_1})$$
 ; $n_1 = -0.493 + 0.476 \text{ Log}_{10} \mu_g$

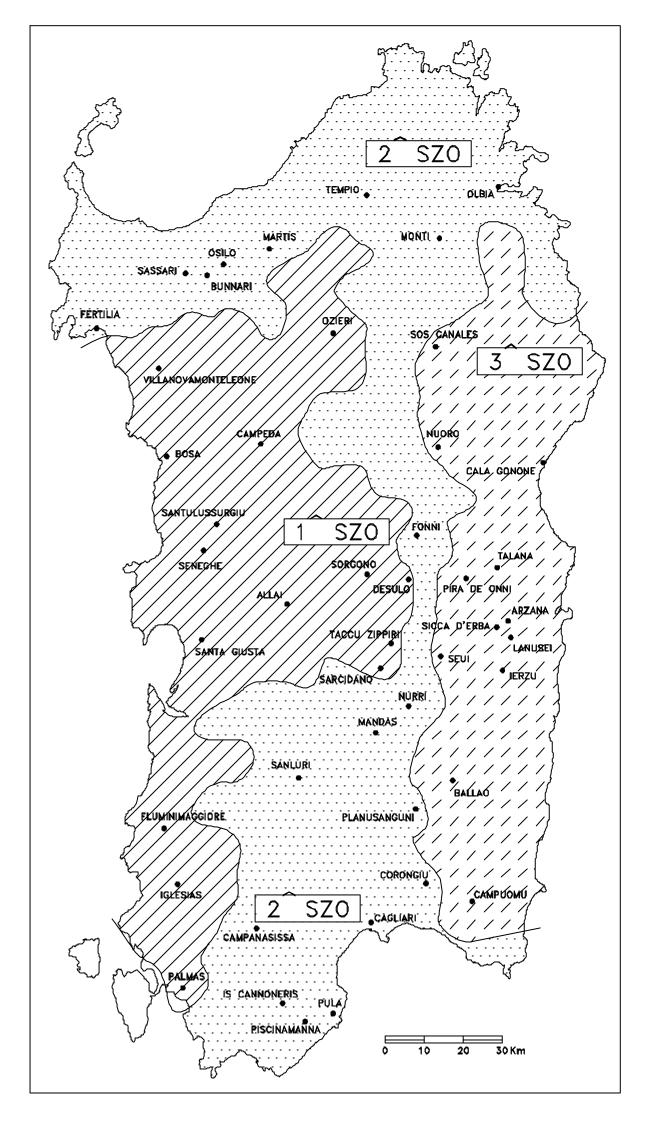
L'altezza di pioggia $h_T(\tau)$ di durata τ con assegnato tempo di ritorno T in anni si ottiene moltiplicando la pioggia indice $\mu(\tau)$ per un coefficiente di crescita $K_T(\tau) = a_2 \tau^{n_2}$:

$$h_T(\tau) = \mu(\tau) K_T(\tau) = (a_1 a_2) \tau^{(n_1 + n_2)}$$

dove i coefficienti a_2 e n_2 si determinano con le relazioni seguenti per differenti T e τ

a) per tempi di ritorno T <= 10 ANNI


b) per tempi di ritorno T > 10 ANNI


SZO 1
$$a_2 = 0.46378 + 1.0386 \text{ Log}_{10} \text{ T}$$
 $n_2 = -0.18449 + 0.23032 \text{ Log}_{10} \text{ T} - 3.3330 \text{ 10}^{-2} \text{ (Log}_{10} \text{ T)}^{-2} \text{ (per } \tau <= 1 \text{ ora)}$ $n_2 = -1.0563 \text{ 10}^{-2} - 7.9034 \text{ 10}^{-3} \text{ Log}_{10} \text{ T}$ (per $\tau >= 1 \text{ ora}$)

SZO 2
$$a_2 = 0.44182 + 1.0817 \text{ Log}_{10} \text{ T}$$

 $n_2 = -0.18676 + 0.24310 \text{ Log}_{10} \text{ T} - 3.5453 \text{ 10}^{-2} \text{ (Log}_{10} \text{ T)}^2 \text{ (per } \tau <= 1 \text{ ora)}$
 $n_2 = -5.6593 \text{ 10}^{-3} - 4.0872 \text{ 10}^{-3} \text{ Log}_{10} \text{ T} \text{ (per } \tau >= 1 \text{ ora)}$

SZO 3
$$a_2 = 0.41273 + 1.1370 \text{ Log}_{10} \text{ T}$$

 $n_2 = -0.19055 + 0.25937 \text{ Log}_{10} \text{ T} - 3.8160 \text{ 10}^{-2} (\text{Log}_{10} \text{ T})^2 \text{ (per } \tau <= 1 \text{ ora)}$
 $n_2 = 1.5878 \text{ 10}^{-2} + 7.6250 \text{ 10}^{-3} \text{ Log}_{10} \text{ T} \text{ (per } \tau >= 1 \text{ ora)}$

¹ Deidda, R. e E. Piga, Curve di possibilità pluviometrica basate sul modello TCEV, *Informazione*, **81**, pagine 9-14, Cagliari, 1998.

